Enrollment No:	Exam Seat No:	

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Linear Algebra

Subject Code: 5SC01LIA1 Branch: M.Sc.(Mathematics)

Semester: 1 Date:19/03/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

		SECTION – I	
Q-1		Attempt the Following questions	(07)
	a)	Define : i) Similar matrices ii) minimal polynomial of T	(02)
	b)	Prove that $L(S)$ is subspace of V .	(02)
	c)	Show that inner product space is linear.	(02)
	d)	Define : Orthogonal Complement	(01)
Q-2		Attempt all questions	(14)
	a)	Let V and W be vector space over F of dimension m and n respectively. Then prove that $HOM(V, W)$ is of dimension mn over F .	(07)
	b)	Let V be a finite dimensional vector space over F and W be subspace of V. Show that W is finite dimensional, $\dim W \leq \dim V$ and $\dim V/W = \dim V - \dim W$.	(07)
		OR	
Q-2		Attempt all questions	(14)
	a)	Let V be a vector space over F then prove that V is isomorphic to a subspace of	(06)
		\hat{V} . If V is finite dimensional then $\cong \hat{V}$.	
	b)	State and prove Gram-Schmidth Orthonormalization process.	(05)
	c)	Show that W^{\perp} is subspace of V .	(03)
Q-3		Attempt all questions	(14)
	a)	If V is finite dimensional over F , and let $S, T \in A(V)$ and S be regular, then prove that $\lambda \in F$ is chatracteristic root of T if and only if it is a characteristic root of $S^{-1}TS$.	(05)
	b)	Let V be finite dimensional over F and $T \in A(V)$. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are distinct roots of T and v_1, v_2, \dots, v_k are characteristic vector of T corresponding to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively. Then v_1, v_2, \dots, v_k are	(05)
	c)	linearly independent. Let V be finite dimensional over F and $T \in A(V)$ show that the number of characteristic root of T is atmost n^2 .	(04)
		OR	

(14)

	a)	Let V be a finite dimensional vector space over F and S, $I \in A(V)$. show that i) $rank(ST) \le rank(T)$ ii) $rank(TS) \le rank(T)$	(05)
		iii) If S is regular then $rank(ST) = rank(TS) = rank(T)$	
	b)	If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V on to V.	(05)
	c)	Prove that $S \in A(V)$ is regular if and only if whenever $v_1, v_2, \dots, v_n \in V$ are linearly independent then $S(v_1), S(v_2), \dots, S(v_n)$ are also linearly independent.	(04)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a)	Find the inertia of quadratic equation $x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3 = 0$.	(02)
	b)	Prove that there do not exists $A, B \in M_n(F)$ such that $AB - BA = I$, where F is field with characteristic 0.	(02)
	c)	If $A, B \in M_n(F)$ then show that $tr(A + B) = tr(A) + tr(B)$	(02)
	d)	Define index of nilpotence.	(01)
Q-5		Attempt all questions	(14)
~ -	a)	Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the	(07)
	/	characteristic roots of T are in F then there is a basis of V with respect to which	` /
		the matrix of T is upper triangular.	
	b)	Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent then	(07)
		the invariants of T are unique.	
		OR	
Q-5		Attempt all questions	(14)
	a)	Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose that $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T . Let $T_1 = T _{V_1}$ and $T_2 = T _{V_2}$. if the minimal polynomial of T_1 over F is $p_1(x)$ while minimal polynomial of T_2 over F is $p_2(x)$. Then show that minimal polynomial of T over F is the least common multiple of $p_1(x)$ and $p_2(x)$.	(05)
	b)	Two nilpotent linear transformations are similar if and only if they have the same invariants.	(05)
	c)	Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F then T satisfies a polynomial of degree n over F .	(04)
Q-6		Attempt all questions	(14)
`	a)	Let $A, B \in M_n(F)$, show that $\det(AB) = \det A \cdot \det B$.	(05)
	b)	State and prove Cramer's rule.	(05)
	c)	Prove that determinant of a matrix and its transpose are same.	(04)
		OR	
Q-6		Attempt all Questions	(14)
	a)	Prove that interchanging the two row of matrix changes the sign of its determinant.	(05)
	b)	Identify the surface given by $11x^2 + 6xy + 19y^2 = 80$. Also convert it to the standard form by finding the orthogonal matrix P .	(05)
	c)	If det $A \neq 0$ then prove that A is regular.	(04)

